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General bi-coupled periodic systems are dealt with by means of transfer matrices of
single units. The solutions of the associated characteristic equation are discussed in terms of
invariant quantities by exploiting the well-known reversibility of its coefficients. An
exhaustive description of the free wave propagation patterns is given on the invariant plane
where propagation domains with qualitatively different character are identified. The
asymptotic behavior of the roots of the characteristic equation when the invariants tend to
infinity is analyzed. The contour plot of the real part of the propagation constants,
responsible for the amount of attenuation of the characteristic waves, is illustrated on the
invariants’ plane. Next, several models of bi-coupled periodic structures made up of beams
resting on elastic supports are considered. A non-linear mapping from the invariants’ plane
to the physical parameters plane provides a concise representation of the pattern of the
propagation domains. A mechanical interpretation associated with the boundaries of these
regions is given. Finally, the proper selection of the physical parameters governing the
propagation modes is discussed.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Periodic structures consist of a series of identical elements joined together. The
transfer matrix method has been extensively adopted in literature to analyze the dynamics
of such structures [1, 2]. This method features the computational advantage of
reducing the dimension of the underlying problem to the number of degrees of freedom
(d.o.f.) coupling basic periodic elements. Such dimension is thereby independent
of the number of elements constituting the whole structure. The dynamic behavior of
mono-coupled systems (1 d.o.f. at the interface) has been thoroughly addressed [3];
already in the late 1960s it was evidenced that the disturbance propagation through
mono-coupled periodic structures is governed by the frequency-dependent transfer
matrix eigenvalues. On the frequency axis there exist intervals or bands where disturbances
propagate harmonically without attenuation (pass-bands), in which the eigenvalues
are complex with unit modulus, and bands where the disturbances decay (stop-bands),
in which the eigenvalues are real and different from 1. Analytical studies have also
been proposed for bi-coupled periodic structures [4] while mostly numerical
approaches have been developed for multi-coupled cases [5, 6]. It has been found
that as soon as the coupling co-ordinates are more than one, there exist further frequency
bands characterized by disturbance harmonic propagation with attenuation
(complex-bands) where pairs of complex conjugate eigenvalues, with modulus different
from 1, exist.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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The description of the dynamics of multi-coupled periodic structures so far proposed in
literature has relied on the frequency as the sole parameter [7–11]. Nevertheless, such
description is generally not exhaustive of the propagation properties of the system, since it
qualitatively depends on the values fixed for the remaining physical parameters. Indeed,
when these are modified, some existing bands generally disappear and some new bands
appear somewhere. Therefore, a multi-dimensional representation is necessary to
completely depict the propagation properties scenario. However, not all the parameters
have the same qualitative influence on such properties, so that the problem of selecting the
smallest set of parameters, able to furnish a complete representation, arises. The task has
some similarities with that of linear bifurcation analysis of dynamical systems [12]. The
most natural way to solve the problem is to refer to the invariants Ik of the transfer matrix
characteristic equation that, for a 2n-coupled system reads: l2n þ

P2n
k¼1 Ikl

2n�k ¼ 0; where
Ik 2 R; if the system is undamped. Thanks to the coefficients reversibility Ik ¼ I2n�k (which
entails that lh and l�1

h are both roots of the polynomial), the eigenvalues lh only depend
on n real quantities Ij (j ¼ 1; . . . ; n), whatever the number of the physical parameters is.
Therefore, by identifying in the n-dimensional space fIjg the domains in which the 2n

eigenvalues lh are of the same type, an exhaustive geometrical representation of the
propagation properties is achieved.

Such description is universal, as it is system-independent. However, when dealing
with a specific n-coupled system, it would be desirable to transform the invariant
space into a physical space. This transformation is accomplished by expressing
the invariants Ij as functions of n chosen parameters pc; which will be referred
to as control parameters, namely Ij ¼ IjðpcÞ: These relationships map the invariant
into the physical space. However, since the relations are in general of a non-linear
type, one point of the former space is mapped in more points of the latter space.
Thus the connected domains of the invariant representation split into disjoined domains
in the physical parameter plane, thus explaining the bands alternation in the usual
one-dimensional representation. Among the control parameters, the frequency is the
most significant one and should be included in the set as a distinguished control parameter.
The choice of the remaining (n � 1) control parameters is arbitrary, whilst it is expected
that they are not all equivalent. The optimum choice would consist in obtaining a
representation qualitatively independent of the remaining (auxiliary) parameters, at least
in some range of their values. No general criteria are so far available, but only examples
are shown here to address the problem.

In this work a qualitative analysis carried out on the invariants’ plane of bi-coupled
periodic structures is proposed. It enables both to identify the stop, pass and complex
domains and to analytically derive the boundaries of such regions. Symmetric and
unsymmetric structures made up of beams resting on elastic supports with both distributed
and lumped masses are considered and their behavior described on the physical
parameters space. The role played by the physical parameters in the wave propagation
patterns is eventually discussed.

2. INVARIANT PROPAGATION SCENARIOS FOR BI-COUPLED PERIODIC
STRUCTURES

A generic periodic structure whose elements are coupled through n ¼ 2 d.o.f. to the
adjacent ones is considered. The dynamic behavior of such bi-coupled structures is
conveniently described by means of the transfer matrix method. Let zk ¼ ðqk; fkÞT be the
state vector of generalized displacement qk and forces fk at the coupling point k; according
to the transfer matrix approach, the state vector zkþ1 at the coupling point (k þ 1) is



PERIODIC STRUCTURE PROPAGATION 871
related to the state vector zk by

zkþ1 ¼ Tzk; ð1Þ
where T is the (4	 4) frequency-dependent transfer matrix which is real in the absence of
damping. It follows that the matrix T and, more specifically, its invariants summarize all
the propagation features of the periodic cell.

2.1. PROPAGATION REGIONS ON THE INVARIANTS’ PLANE

Let us consider a generic undamped bi-coupled periodic structure; due to the spectral
properties of the symplectic matrix T [13, 14] (see Appendix A), the characteristic equation
det½T� lI� ¼ 0 reads as

l4 þ I1l
3 þ I2l

2 þ I1lþ 1 ¼ 0; I1; I2 2 R; ð2Þ
where the coefficients I1 and I2 are the invariants of T: Therefore, the reversibility property
halves the number of the transfer matrix invariants.

The meaning of the eigenvalues li emerges from Floquet’s theorem: there exist free wave
motions (characteristic waves) in which zkþ1 ¼ lizk; each associated with an eigenvalue of
T: If jlij51 the wave amplitude decays in the positive direction (forward wave), if jlij > 1
it decays in the negative direction (backward wave), if jlij ¼ 1 no attenuation exists in the
two directions. Due to the reversibility of the coefficients of equation (2), if li is an
eigenvalue, then l�1

i is also an eigenvalue (called the adjoint eigenvalue). Therefore
forward and backward waves always exist in pairs and both have the same propagation
properties. It follows that two eigenvalues l1 and l2 such that jlij41 (i ¼ 1; 2), completely
define the propagation properties of a bi-coupled periodic structure; they will be here
referred to as principal eigenvalues. Since the eigenvalues must be complex conjugates in
pairs, if l1 is complex, then l2 ¼ %ll1; if l1 is real, l2 is either real or complex and it has
unit modulus. When a complex eigenvalue has unit modulus, its adjoint coincides with the
complex conjugate, so that more than two eigenvalues satisfy the inequality jlij41: To
avoid indeterminacies, two eigenvalues with positive phase 04W4p will be taken as
principal eigenvalues. If W ¼ 0 or p; only one of the two coincident eigenvalues must be
taken. As usually done in the literature, previous findings can be restated in terms of the
propagation constants mi; instead of the eigenvalues li; by defining li ¼ emi : This position
maps the unit circle of the Re(li)–Im(li) plane into the left half-space of the Re(mi)–Im(mi)
plane.

To solve (2) it is convenient to rewrite it in terms of the propagation constant m: By
letting l ¼ em and multiplying by e�2m; equation (2) reads

e2m þ I1e
m þ I2 þ I1e

�m þ e�2m ¼ 0; ð3Þ
leading to the following quadratic equation in cosh m:

4 cosh2 mþ 2I1 cosh mþ I2 � 2 ¼ 0: ð4Þ
The roots of equation (4) are

ðcosh mÞ1;2 ¼
1

4
�I1 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ I2

1 � 4I2

q� �
¼: F1;2ðI1; I2Þ: ð5Þ

To discuss equation (5) the cases F1;2 2 R and F1;2 2 C are separately considered. As far as
F1;2 2 R; if F1;2 2 I :¼ ½�1; 1�; then m ¼ iW and l ¼ eiW is complex with unit modulus; if
F1;2 =2 I; m ¼ aþ ijp with j integer, and l ¼  ea is real. On the other hand, if F1;2 2 C;
m ¼ aþ iW and l ¼ eaþiW is complex with modulus different from 1. The possible location
of the eigenvalues on the complex plane are summarized in Figure 1. The wave
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Figure 2. Position on the invariants’ plane I1–I2 according to the location of the eigenvalues l on the complex
plane.
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propagation characteristics of bi-coupled periodic systems can be conveniently described
through a geometric representation on the invariants’ plane I1–I2 (Figure 2). When
cosh m ¼ �1; two curves are obtained in the I1–I2 plane, given, respectively, by

r :¼ fðI1; I2Þ j 2� 2I1 þ I2 ¼ 0g; s :¼ fðI1; I2Þ j 2þ 2I1 þ I2 ¼ 0g: ð6Þ

A further curve, dividing the real roots of equation (5) from the complex ones, is given by
the parabola

p :¼ fðI1; I2Þ j 8þ I2
1 � 4I2 ¼ 0g: ð7Þ

The three curves r; s and p divide the invariants’ plane into domains (propagation zones)
where the eigenvalues are of the same type. In Figure 3 the propagation zones are labelled



Figure 3. Propagation zones on the invariants’ plane I1–I2:
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according to the notation commonly used in the literature. The region where both the
pairs of l lie on the unit circle is referred to as pass-pass (PP); the regions where only one
pair of l lies on the unit circle while the other pair is real are referred to as pass-stop (PS);
the regions where only real pair of eigenvalues occurs are the stop-stop (SS) domains.
Moreover, the curve p bounds the so-called complex region (C) characterized by complex
conjugate eigenvalues. It is worth noting that only the PP region is bounded while the
remaining domains are unbounded.

In Appendix B the analysis so far addressed to bi-coupled structures is extended to the
case of three-coupled periodic structures. The main steps of the analysis are sketched with
the aim to highlight that the propagation properties of such systems can be entirely
inferred by considering a three-dimensional invariants’ space.

2.2. ASYMPTOTIC BEHAVIOR OF THE ROOTS l ON THE INVARIANTS’ PLANE

In technical applications it is not rare that, as a physical parameter varies, the invariants
I1 and/or I2 rapidly tend to infinity. Therefore, the analysis of the asymptotic behavior of
the roots l of equation (2) as the invariants I1; I2 tend to infinity, either simultaneously or
one at a time, is worth being investigated. In this section three limiting cases will be
discussed, namely:

ðaÞ ðI1; I2Þ ! 1; ðbÞ I1 ! 1; I2 ¼ Oð1Þ; ðcÞ I1 ¼ Oð1Þ; I2 ! 1:

Case (a). By setting I1 ¼ #II1=e; I2 ¼ #II2=e; where e denotes a small quantity and
Oð #II1Þ ¼ Oð #II2Þ ¼ 1; substituting into equation (2), and dropping the hats, the equation
reads as

lðI1l2 þ I2lþ I1Þ þ eðl4 þ 1Þ ¼ 0: ð8Þ
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Two roots of Oð1Þ; one of OðeÞ and one of Oð1=eÞ are found (the latter by setting l ¼ e#ll
and l ¼ #ll=e); they are, respectively,

l ¼ � I2

2I1
 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2

I1

� �2

�4

s
; l ¼ �1

I1
; l ¼ �I1: ð9Þ

Case (b). By letting I1 ¼ #II1=e and substituting into equation (2) we get

eðl4 þ I2l
2 þ 1Þ þ I1ðl3 þ lÞ ¼ 0 ð10Þ

Again, there exist two roots of Oð1Þ; one of OðeÞ and one of Oð1=eÞ and they are given by

l ¼ i; l ¼ �1

I1
; l ¼ �I1: ð11Þ

The roots coincide with those of the previous case in which I2 ¼ 0:
Case (c). By letting I2 ¼ #II2=e2 and substituting into equation (2) it follows that

e2ðl4 þ I1l
3 þ I1lþ 1Þ þ I2l

2 ¼ 0: ð12Þ
The four roots of the latter equation, two of Oð1=eÞ and two of OðeÞ are given, respectively,
by

l2 ¼ �1

I2
; l2 ¼ �I2: ð13Þ

From the above results it follows that complex zones can exist only if I2 ! þ1 (Case (c))
and they cannot exist whenever I1 ! 1 because at least one pair of eigenvalues is real
(Cases (a) and (b)). Such conclusions are consistent with equation (7) based on which
complex zones can only exist if jI1j4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4I2 � 8Þ

p
while I252: The accuracy of the

approximated formulas (9), (11) and (13) has been tested in Figure 4, where the real and
the imaginary parts of the principal eigenvalues have been plotted along three straight
paths on the invariant plane. The approximated solution is in very good agreement with
exact (numerical) results as soon as the invariants are of Oð10Þ:

2.3. ISO-ATTENUATION CURVES ON THE INVARIANTS’ PLANE

As previously mentioned, the propagating or attenuating nature of the characteristic
waves travelling through periodic systems is characterized by the modulus r :¼ jlij of the
transfer matrix eigenvalues. Except for the PP zone, where both the waves propagate,
attenuation of one or both the characteristic waves occurs on the whole invariant plane. In
this section, attention is focused on describing the loci of the eigenvalues having the same
modulus on the invariants’ plane (iso-attenuation curves). From a geometrical point of
view, the ensemble of these curves can be interpreted as the contour plot of the surface
r ¼ rðI1; I2Þ; shown in Figure 5(a).

By setting l ¼ reiW (05r41; 04W4p) and separating the real and imaginary parts in
equation (2), the following two equations are obtained:

ðr2 cos 3Wþ cos WÞ I1 þ r cos 2W I2 ¼ �1

r
� r3 cos 4W; ð14Þ

ðr2 sin 3Wþ sin WÞ I1 þ r sin 2W I2 ¼ �r3 sin 4W: ð15Þ
By fixing r and letting W vary, equations (14,15) yield the parametric equations I1 ¼ I1ðWÞ;
I2 ¼ I2ðWÞ of the iso-r curves sought. They are depicted in Figure 5(b) while the details of
the solution are given in Appendix C. Inside the complex region C, each point of the
curves r ¼const is associated with a distinct value of W=ð0; pÞ: When W ¼ ð0; pÞ; equations
(14,15) admit infinite solutions represented by the two families of straight lines with



Figure 4. Exact (}}) and approximated (– – –) principal eigenvalues, along three paths: (a) I1 ¼ I2; (b)
I2 ¼ 0; (c) I1 ¼ 0:
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opposite slopes belonging to the PS and SS zones shown in Figure 5(b). In particular, both
the sets of straight lines cross the SS domains (two real eigenvalues) while only one set of
lines (one real eigenvalue) crosses the PS zones. It can also be shown (see Appendix C) that
the iso-attenuation curves encircle the PP domain as illustrated by the thick lines in Figure
5(b). Furthermore, the intersections of the iso-r belonging to the C region and those of the
PS and SS regions occur along the curve p: For r ¼ 1; the iso-attenuation curve is
constituted by the curves r; s and the part of curve p between the points S and R indicated
in Figure 3. In the vicinity of the PP zone (where OðI1Þ ¼ OðI2Þ ¼ 1), the strong gradient of
r implies fast attenuation of the characteristic waves. On the other hand, for higher values
of I1; I2; a small gradient of r is noticed.

3. BI-COUPLED PERIODIC BEAMS ON ELASTIC SUPPORTS

Up to this point, the analysis has been carried out on the invariants’ plane where no
assumptions were required on the nature of the bi-coupled periodic system. To apply it to



(a) (b)

-8 -4 0 4 8 I 1

-30

-20

-10

0

10

20

30

I2

s

p

r

0.2

0.3

0.5

1.0

0.20.2
0.1 0.1

1.0 1.0

0.5 0.5

0.3 0.3
I1

I 2

�

0

0.25

0.5

0.75

-10
-5

0

5

10

-20

0

20

Figure 5. Modulus r of the eigenvalues of T: (a) surface r ¼ rðI1; I2Þ; (b) iso-attenuation curves on the
invariants’ plane I1–I2:

Figure 6. Bi-coupled beam element.
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a specific problem, two steps must be performed after deriving the transfer matrix T; first,
the invariants must be expressed in terms of the physical parameters; then, the
propagation regions (and possibly the iso-attenuation curves) must be mapped in a plane
of two control parameters suitably selected. The procedure is illustrated here referring to a
specific class of bi-coupled periodic structures whose repetitive elements, as sketched in
Figure 6, are given by Euler beams of length l; flexural stiffness EI ; resting on elastic
supports with translational stiffness kt=2; with distributed mass m and a lumped mass M

located at x: For such periodic elements, the state vector at the coupling point k is given by
zk ¼ ðvk; jk; Vk; MkÞT; where v; j and V ; M represent the generalized displacement and
forces components respectively. The following four non-dimensional parameters govern
the propagation properties of a cell:

b ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo2l4=ðEIÞ

q
; k ¼ ktl

3=EI ; x ¼ x=l; d ¼ M=ml: ð16Þ

Different sub-models will be considered, namely: no lumped mass (two-parameter b; k
model); mass located at mid-span (three-parameter b; k; d model); free mass location
(four-parameter b; k; x; d model). The derivation of the transfer matrix for the four-
parameter model is summarized in Appendix D.



PERIODIC STRUCTURE PROPAGATION 877
3.1. TWO-PARAMETER MODEL

The first class of beams considered in this section refers to systems with distributed mass
only. The model physical parameters are b and k: From the expression of the transfer
matrix (see e.g. reference [15]), the following invariants are drawn:

I1 ¼ �2 cosh b� 2 cos b� k
2b3ðsin b� sinh bÞ;

I2 ¼ 2þ 4 cos b cosh bþ k
b3ðcosh b sin b� cos b sinh bÞ: ð17Þ

Equations (17) represent a non-linear mapping from points on the invariant plane I1–I2 to
points on the physical parameters plane b–k: Thus, the curves r; s and p of Figure 3
become the branches ri; si and pi of Figure 7, obtained by substituting (17) into equations
(6,7); in particular, parabola (7) is mapped into the closed curves pi: Such branches define
the propagation regions of the periodic structure. In Figure 7 closer views of the first three
pass–pass zones are also presented. The points T ; S and R of Figure 3 are mapped into the
points Ti; Si and Ri; the index i representing the ith pass–pass region. The curves ri and si

are given by
ri; si :¼ ðb; kÞ j
1 cos b ¼ 0 for i odd

k ¼ �4b3ð1 cosh bÞ
sin b

ð1cos bÞð1 cosh bÞ � sinh b
for i even

8><
>:

9>=
>;

8><
>: ;

Figure 7. Propagation zones and closer views around the PP zones on the b–k plane for the two-parameter
model.
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while the curves pi are made up of two branches, piu (upper) and pil (lower), defined in the
intervals b 2 ½np; ðn þ 1Þp� (n even), having equations

piu;l :¼ ðb; kÞ j k ¼ 4b3ðcosh b� cos bÞ
ð
ffiffiffiffiffiffiffiffiffiffi
sin b

p


ffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh b

p
Þ2

( )
: ð18Þ

As shown in Figure 8, the two branches piu and pil in equation (18) coincide for b ¼ np and
they tend to coalesce for large values of b; indeed, for b ! 1; piu � pil � 4b3=tanh b �
4b3: Such monotonically increasing trend implies that, for each value of the springs
translational stiffness, only one complex region can be crossed. Furthermore, it can be
inferred that, for this class of periodic structures, complex regions disappear as the
frequency increases. Such result is consistent with the asymptotic analysis of the preceding
section. Indeed, from the expression of I1 in equation (17), it follows that as b ! 1;
I1 ! �1 so that at least one pair of real roots l will always exist (Cases (a) and (b) in
section 2.2), preventing the eigenvalues from complex zones crossings.

The propagation zones shown in Figure 7 provide a complete description of the
dependence of the wave propagation characteristics on the spring translational stiffness.
The usual representation [4] of the real and imaginary parts of the propagation constants
(Figures 9(a) and 9(b)) can be interpreted as section of the three-dimensional graphs of
functions Re m ¼ f ðb; kÞ and Im m ¼ gðb; kÞ; obtained with a plane parallel to the b-axis at
the chosen value of k; whose trace is illustrated in Figure 9(c) for two values of k; these
traces map in the curves of Figure 9(d) on the invariants’ plane. Thus, the non-linear
mapping between the two planes allows one to represent the evolution of the arrangement
of the propagation bands. In Figure 10 the iso-attenuation curves on the b–k plane are
shown around the second PP zone (see Figure 7(b)). They have been obtained by using
equations (17) in the solution of equations (14,15) and solving for b and k: The original
symmetry of Figure 5(b) is destroyed, whereas the strong gradient of the attenuation
around the PP zone persists.

Finally, several mechanical considerations can be associated with either the curves r

and s on the invariants’ plane or, equivalently, with their representation ri; si on the
physical parameters’ plane. In 1975, Mead [4] presented the main results pertaining to
multi-coupled periodic systems. Besides highlighting the existence of the complex bands,
he identified the natural frequencies of a single symmetric element of a bi-coupled system
with the bounding frequencies of the propagation bands on the b-axis. Since this result
holds for any k; it follows that along the line ri (si) are located both the natural frequencies
corresponding to the symmetric modes of the single element when its translational
Figure 8. Complex zones on the b-k plane: (a) 04b49:42; (b) 9:424b416:



Figure 9. Real and imaginary parts of the propagation constants: (a) k ¼ 100; (b) k ¼ 500; and corresponding
paths k ¼const for increasing b; (c) on the physical plane; (d) on the invariants’ plane.
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(rotational) co-ordinates are locked and the natural frequencies corresponding to the
antisymmetric modes of the single element when its rotational (translational) co-ordinates
are locked (see Figure 11). Figure 11 explains the role of the parameter k in the sequence of
the natural frequencies of the hinged–hinged and sliding–sliding beams. As expected, the
parameter k does not affect the natural frequencies of the former.

3.2. THREE-PARAMETER MODEL

Beams with a mid-span lumped mass are next considered, for which the propagation
zones of Figure 12 are found for different mass ratios d: Comparison with Figure 7,
representing the case d ¼ 0 highlights the effect of the parameter d: It can be noticed that,
due to the mid-span location of the lumped mass, the value of d does not affect the domain
boundaries corresponding to the natural frequencies of the antisymmetric modes when
either rotational or translational coordinates are locked. Furthermore, a contraction of the
complex zones as d increases can be noticed. For k ¼ 0 and d=0 propagation zones of the
SS type exist. On the other hand, for k ¼ 0 and d ¼ 0 such SS zones disappear; thereby we



Figure 10. Iso-attenuation curves on the b–k plane.

Figure 11. Bounding curves on the b–k plane and natural frequencies of single elements.

Figure 12. Propagation zones on the b–k plane for the three-parameter model: (a) d ¼ 1; (b) d ¼ 2:
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are left with a system whose period is arbitrary or, in other words, with a system behaving
as being uniformly continuous where only PS zones can exist.

It might be of interest to investigate the representation of the propagation domains
provided by a different choice of the control parameters. Figure 13 shows the propagation



Figure 13. Propagation zones on the b–d plane for the three-parameter model: (a) k ¼ 125; (b) k ¼ 500:
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domains in the b–d plane for two values of the springs stiffness k: As can be readily
noticed, the propagation properties undergo qualitative variations depending on the
considered stiffness value; for instance, the complex region found for k ¼ 125 (Figure
13(a)) disappears for k ¼ 500 (Figure 13(b)). Therefore, it can be concluded that the latter
choice of physical parameters prevents a comprehensive qualitative description of the
dynamic behavior of such class of bi-coupled periodic elements.

The circumstance outlined in section 2.2 pertaining to the tendency to infinity of the
invariants is now shown for a simplified model. By assuming that the distributed mass of
the beam vanishes (m ¼ 0), the invariants I1;I2 assume the following manageable
dimensional expression:

I1 ¼
1

1152
�4608þ ktl

6

ðEIÞ2
Mo2 � 192

l3

EI
Mo2 þ 384

ktl
3

EI

 !
; ð19Þ

I2 ¼ � 1

576
�3456þ 7

ktl
6

ðEIÞ2
Mo2 þ 384

l3

EI
Mo2 � 768

ktl
3

EI

 !
: ð20Þ

It follows that for such elements complex zones can exist only for kt and either o or M

small; indeed, as one of the above-mentioned parameters increases, then I1 ! 1: The
above result holds also by assuming l small; in the limit l ! 0; the system behaves as a
beam resting on a spring bed whose characteristic exponents are complex conjugate.

3.3. FOUR-PARAMETER MODEL

The bi-coupled asymmetric periodic structure considered in this section is built up by
the repetitive elements shown in Figure 6, with a lumped mass M located at an arbitrary
position, so that its invariants depend on four parameters, Ii ¼ Iiðb; k; d; xÞ: The
propagation regions on the control parameter plane b–k are shown in Figure 14 for
different positions x of the mass and a fixed mass ratio d ¼ 1: For x ¼ 1

2
; the propagation

zones coincide with those in Figure 12(a). The qualitative arrangement of the propagation
domains can still be thoroughly described on this plane. In particular, for k ¼ 0 the
sequence of PS and SS bands, as b increases, does not depend on x because, once the
spring supports have been removed, the system spatial periodicity is only governed by the
relative distance between the masses. It is also worth mentioning that, for unsymmetric
elements (x=1

2
), the natural frequencies can no longer be identified with the boundaries of

the propagation zones.



Figure 14. Propagation zones on the b–k plane for the four-parameter model (d ¼ 1): (a) x ¼ 0:33; (b) x ¼
0:16:

Figure 15. Propagation zones on the b–x plane for the four-parameter model (d ¼ 1): (a) k ¼ 125; (b) k ¼ 500;
(c) k ¼ 1600:
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In the four-parameter beam model the position x of the lumped mass (or the mass ratio
d) could be used as an alternative control parameter to describe the propagation domains.
Figure 15 shows the domains on the b–x plane for different k’s. Further representations on
the k–x plane are also shown in Figure 16 for different b’s. It turns out that such
representations are not appropriate for describing all the propagation properties of the
system. Therefore, again, k and b mainly govern its dynamic behavior.

4. CONCLUSIONS

The propagation properties of periodic structures are thoroughly described in spaces
having the minimum dimension necessary to qualitatively characterize the type of



Figure 16. Propagation zones on the k–x plane for the four-parameter model (d ¼ 1): (a) b ¼ 5:8; (b) b ¼ 7:
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eigenvalues. Thus, moving from the characteristic equation of the symplectic transfer
matrix, bi-coupled periodic structures have been analyzed on the invariants’ plane. Such
approach enabled one to derive analytically the boundaries of the stop, pass and complex
domains. It has been found that pass–pass bands are confined to a small neighborhood of
the origin. Furthermore, the values taken by the modulus of the eigenvalues (or,
equivalently, by the real part of the propagation constants) have been portrayed on the
same plane, showing that most of the characteristic waves attenuation occurs in the
vicinity of the pass–pass zone boundaries. Then, periodic structures made up of beams
resting on elastic supports have been considered. Various models characterized by the
presence of different physical parameters have been studied. The free-wave propagation
domains on different physical parameter planes have been obtained through non-linear
mappings from the invariants’ plane. Such representations highlighted the role played by
each physical parameter on the propagation properties of the periodic structure.
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APPENDIX A: EIGENVALUES RECIPROCITY VIA DYNAMIC STIFFNESS MATRIX

The eigenvalues reciprocity property of the transfer matrix of periodic structures can be
derived by resorting to the dynamic stiffness matrix. According to this approach, the
equation of motion of an undamped generic element reads as

MLL MLR

MRL MRR

 !
.qqL

.qqR

 !
k

þ
KLL KLR

KRL KRR

 !
qL

qR

 !
k

¼
fL

fR

 !
k

: ðA:1Þ

In the latter equation qi and f i; with i ¼ L;R; denote the n-dimensional displacement and
external forces vectors respectively. The suffixes L and R indicate the left and right ends,
respectively, of the repetitive element and the terms Mij; Kij (i; j ¼ L;R) represent the
(n 	 n) mass and stiffness submatrices respectively. Index k refers to the kth element,
joining joints k and (k þ 1). By denoting with qk the displacements at the joint k and
enforcing the compatibility between the adjacent elements, qL;k ¼ qR;k�1 ¼ qk and qR;k ¼
qL;kþ1 ¼ qkþ1 results; by taking into account the symmetry of mass and stiffness matrices,
the equations of motion of the periodic structure are

B .qqk�1 þ A .qqk þ BT .qqkþ1 þD qk�1 þ C qk þDT qkþ1 ¼ fk; ðA:2Þ

where B ¼ MRL; D ¼ KRL; A ¼ MLL þMRR and C ¼ KLL þ KRR: For harmonic motions
qk ¼ Xke

iot; by defining Eiqk8qkþi; the following difference equation is obtained:

½ðD� o2BÞ E�1 þ ðC� o2AÞ þ ðD� o2BÞT E1�Xk ¼ 0: ðA:3Þ

Equation (A.3) admits the solution Xk ¼ lku; leading to the following eigenvalue problem

ðD� o2BÞ 1
l
þ ðC� o2AÞ þ ðD� o2BÞTl

� �
u ¼ 0: ðA:4Þ

The latter problem admits non-trivial solution if and only if the determinant of the matrix
inside the brackets is equal to zero, i.e.,

det ðD� o2BÞ 1
l
þ ðC� o2AÞ þ ðD� o2BÞTl

� �
¼ 0: ðA:5Þ

If the above determinant is equal to zero, the same holds for the determinant of the
transpose matrix:

det ðD� o2BÞ lþ ðC� o2AÞ þ ðD� o2BÞT1
l

� �
¼ 0 ðA:6Þ

in which, due to the symmetry of the mass and stiffness matrices, ðC� o2AÞT ¼
ðC� o2AÞ: It follows from equations (A.5) and (A.6) that if l is a solution of (A.5) then
1=l is also a solution. Therefore, when the characteristic equation (A.5) is expanded, its
coefficients are symmetric.
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APPENDIX B: THREE-COUPLED STRUCTURES INVARIANTS’ SPACE

The analysis of the undamped bi-coupled systems carried out in section 2 can be in
principle extended to the three-coupled case, although the analysis is not straightforward.
The characteristic equation (2) is now substituted by

l6 þ I5l
5 þ I4l

4 þ I3l
3 þ I2l

2 þ I1lþ 1 ¼ 0: ðB:1Þ

By setting l ¼ em; m 2 C and considering that I4 ¼ I2 and I5 ¼ I1; the latter expression
becomes

e3m þ e�3m� �
þ I1 e2m þ e�2m� �

þ I2 em þ e�mð Þ þ I3 ¼ 0; ðB:2Þ

which is also written as

2 cosh 3mþ 2 I1 cosh 2mþ 2 I2 cosh mþ I3 ¼ 0: ðB:3Þ

After some algebraic manipulation the latter equation can be expressed as a cubic
equation in cosh m as follows:

cosh3 mþ 1
2

I1 cosh
2 mþ 1

4
ðI2 � 3Þ cosh mþ 1

8
ðI3 � 2 I1Þ ¼ 0: ðB:4Þ

By changing the variable according to cosh m ¼ z� I1=6; the original equation is
transformed into the simpler form

z3 þ p zþ q ¼ 0; ðB:5Þ

where p ¼ �I2
1=3þ I2 � 3 and q ¼ 1=4ðI3 � I1Þ � 1=6I1I2 � 1=27I3

1 : For p and q real, the
space ðI1; I2; I3Þ is divided into three types of regions according to the sign of the
discriminant D ¼ q2=4þ p3=27 of equation (B.5), given by

D ¼ ½4 I3
1 þ 9 I1 ð3þ 2 I2Þ � 27 I3�2 � 64 ð9þ I2

1 � 3 I2Þ3: ðB:6Þ

For D > 0; there exist one real and two complex conjugate roots, for D50; there are three
simple real roots, and for D ¼ 0; there are a double and a simple real root.

APPENDIX C: PARAMETRIC EQUATIONS OF THE ISO-ATTENUATION CURVES

The set of equations (14,15) admits a unique solution for 05W5p:

I1ðr; WÞ ¼ �2 ðrþ 1=rÞcos W; ðC:1Þ

I2ðr; WÞ ¼ 2cos 2Wþ ðrþ 1=rÞ2: ðC:2Þ

Curves (C.1, C.2) lie inside the complex region C (see Figure 5(b)) and a distinct value of W
is associated with each point of such curves r ¼const. On the other hand, for W ¼ ð0;pÞ;
the set of equations (14,15) provides infinite solutions consisting of the pairs ðI1; I2Þ such
that

rðr2 þ 1Þ I1 þ r2 I2 þ r4 þ 1 ¼ 0: ðC:3Þ

Curves (C.3) describe two families of straight lines, tangent to the parabola p; with
negative and positive slopes respectively. Lines (C.3) belong to the PS and SS zones; in
particular, both the families exist within the SS regions (two real eigenvalues) while only
one family can exist within the PS region (one real eigenvalue). The same value (0; p) of W
is associated with each point of such lines.

In order to show that the iso-r curves encircle the PP zone, it suffices to verify that,
when W ! ð0; pÞ the parametric curves (C.1,C.2) meet the straight lines (C.3) for the same
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r value. Indeed, from (C.1,C.2),

lim
W!ð0;pÞ

I1 ¼ �2ð1=rþ rÞ; lim
W!ð0;pÞ

I2 ¼ 4þ 1=r2 þ r2; ðC:4Þ

which satisfies equation (C.3). Since these values of I1 and I2 also satisfy equation (7), the
intersection points belong to the parabola p:

APPENDIX D: TRANSFER MATRIX FOR THE FOUR-PARAMETER MODEL

The main steps pertaining to the derivation of the transfer matrix of the beam element
sketched in Figure 6 are summarized in this section.

Due to the presence of the lumped mass, it is convenient to divide the integration
domain of the differential problem m .vv þ EI v0000 ¼ 0 into two intervals, to the left and to
the right of the lumped mass located at the abscissa x: By letting vi ¼ fiðsÞ eiot (i ¼ 1; 2),
two space-dependent ordinary differential equations follow, namely f0000

i � a4fi ¼ 0
(i ¼ 1; 2), where a4 ¼ mo2=EI : The solutions of such equations are expressed as

fiðsÞ ¼ Ci1 sin as þ Ci2 cos as þ Ci3 sinh as þ Ci4 cosh as; i ¼ 1; 2: ðD:1Þ
The eight constants Cij are found by solving an (8	 8) algebraic problem obtained by
imposing the nodal displacements and rotations at the left (vL; jL) and right (vR;jR) ends
of the beam segment and enforcing the compatibility and equilibrium at the mass location
x: Afterwards, the end forces are evaluated as functions of the end displacements through:

fL ¼ EIf000
1 ð0Þ;

mL ¼ �EIf00
1ð0Þ;

(
fR ¼ �EIf000

2 ðlÞ;
mR ¼ EIf00

2ðlÞ

(
ðD:2Þ

from which the dynamic stiffness matrix S is derived. The elastic supports are taken into
account by adding the spring translational stiffness to the diagonal terms Sii; i ¼ 1; 3:
After partitioning the matrix S into (2	 2) submatrices, the transfer matrix T is eventually
obtained by using the well-known relations [13]: TLL ¼ �S�1

LRSLL; TLR ¼ S�1
LR; TRL ¼

�SRL þ SRRS
�1
LRSLL; TRR ¼ �SRRS

�1
LR:
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